Advertisements
Advertisements
प्रश्न
Find the binding energy per nucleon of `""_79^197"Au"` if its atomic mass is 196.96 u.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
उत्तर
Given:-
Atomic mass of Au, A = 196.96
Atomic number of Au, Z = 79
Number of neutrons, N = 118
Binding energy,
`B = (Zm_p + Nm_n - M)c^2`
Here, mp = Mass of proton
M = Mass of nucleus
mn = Mass of neutron
c = Speed of light
On substituting the respective values, we get
`B = [(79 xx 1.007276 + 118 xx 1.008665) "u" - 196.96 "u" ] c^2`
`= (198.597274 - 196.96) xx 931 "MeV"`
`= 1524.302094 "MeV"`
Binding energy per nucleon = `1524.3/197 = 7.737 "MeV"`
APPEARS IN
संबंधित प्रश्न
Is the nucleus formed in the decay of the nucleus `""_11^22Na`, an isotope or isobar?
Obtain the binding energy (in MeV) of a nitrogen nucleus `(""_7^14"N")`, given `"m"(""_7^14"N")` = 14.00307 u.
What is the significance of binding energy per nucleon of a nucleus of a radioactive element?
Which property of nuclear force explains the constancy of binding energy per nucleon `((BE)/A)` for nuclei in the range 20< A < 170 ?
Binding energy per nucleon for helium nucleus (2 He) is 7.0 MeV Find value of mass defect for helium nucleus
Calculate mass defect and binding energy per nucleon of `"_10^20 Ne`, given
Mass of `"_10^20 Ne= 19.992397` u
Mass of `"_0^1H = 1.007825` u
Mass of `"_0^1n = 1.008665` u
Answer the following question.
Draw the curve showing the variation of binding energy per nucleon with the mass number of nuclei. Using it explains the fusion of nuclei lying on the ascending part and fission of nuclei lying on the descending part of this curve.
Calculate the binding energy of an alpha particle given its mass to be 4.00151 u.
Determine the binding energy per nucleon of the americium isotope \[\ce{_95^244Am}\], given the mass of \[\ce{_95^244Am}\] to be 244.06428 u.
The difference in mass of a nucleus and its constituents is called ______.
He23 and He13 nuclei have the same mass number. Do they have the same binding energy?
The deuteron is bound by nuclear forces just as H-atom is made up of p and e bound by electrostatic forces. If we consider the force between neutron and proton in deuteron as given in the form of a Coulomb potential but with an effective charge e′: F = `1/(4πε_0) e^('2)/r` estimate the value of (e’/e) given that the binding energy of a deuteron is 2.2 MeV.
Calculate the binding energy of an alpha particle in MeV. Given
mass of a proton = 1.007825 u
mass of a neutron = 1.008665 u
mass of He nucleus = 4.002800 u
1u = 931 MeV/c2
Define binding energy per nucleon.
Which of the following quantities is a measure of stability of nucleus?
What is binding energy of nucleus?
Find the binding energy per nucleon of 235U based on the information given below.
Mass(u) | |
mass of neutral `""_92^235"U"` | 235.0439 |
mass of a proton | 1.0073 |
mass of a neutron | 1.0087 |