हिंदी

Find-distance-point-3-3-3-plane-r-5-i-2-j-7-k-9-0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (3, 3, 3) from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7k \right) + 9 = 0\]

 
योग

उत्तर

\[\text{ The given plane is } \]
\[ \vec{r} . \left( 5 \hat{i}  + 2 \hat{j}  - 7 \hat{k}  \right) + 9 = 0\]
\[ \Rightarrow \vec{r} . \left( - 5 \hat{i}  - 2 \hat{j}  + 7 \hat{k} \right) = 9\]
\[ \text{ We know that the perpendicular distance of a point P of position vector }  \vec{a} \text{ from the plane } \vec{r} . \vec{n} =\text{ d is given by }  \]
\[p = \frac{\left| \vec{a} . \vec{n} - d \right|}{\left| \vec{n} \right|}\]
\[ \text{ Finding the distance from (3, 3, 3) (which means 3 }  \hat{i}  +3 \hat{j}  + 3 \hat{k}  ) \text{ to the given plane } \]
\[\text{ Here } , \vec{a} = 3 \hat{i} + 3 \hat{j} + 3 \hat{k} ; \vec{n} = - 5 \hat{i} - 2 \hat{j} + 7 \hat{k}  ; d = 9\]
\[ \text{ So, the required distance p } \]
\[ = \frac{\left| \left( 3 \hat{i} + 3 \hat{j} + 3 \hat{k}  \right) . \left( - 5 \hat{i}  - 2 \hat{j}  + 7 \hat{k} \right) - 9 \right|}{\left| 3 \hat{i} + 3 \hat{j}  + 3 \hat{k}  \right|}\]
\[ = \frac{\left| - 15 - 6 + 21 - 9 \right|}{\sqrt{25 + 4 + 49}}\]
\[ = \frac{\left| - 9 \right|}{\sqrt{78}}\]
\[ = \frac{9}{\sqrt{78}} \text{ units } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.09 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.09 | Q 8 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the points (1, 1, 1) and (-3, 0, 1) are equidistant from the plane `bar r (3bari+4barj-12bark)+13=0`


Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C(5, 3, −3).


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                    Plane
(0, 0, 0)           3x – 4y + 12 z = 3


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                 Plane

(2, 3, – 5)           x + 2y – 2z = 9


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point              Plane

(– 6, 0, 0)        2x – 3y + 6z – 2 = 0


Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units

(B) 4 units

(C) 8 units

(D)`2/sqrt29 "units"`


Show that the points (1, –1, 3) and (3, 4, 3) are equidistant from the plane 5x + 2y – 7z + 8 = 0


Find the distance of the point (1, 2, –1) from the plane x - 2y + 4z - 10 = 0 .


Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Find the equations of the planes parallel to the plane x − 2y + 2z − 3 = 0 and which are at a unit distance from the point (1, 1, 1).

 

Find the distance of the point (2, 3, 5) from the xy - plane.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured parallel to the line whose direction cosines are proportional to 2, 3, −6.


If the product of the distances of the point (1, 1, 1) from the origin and the plane x − y + z+ λ = 0 be 5, find the value of λ.


Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C (5, 3, −3). 


Find the distance between the parallel planes 2x − y + 3z − 4 = 0 and 6x − 3y + 9z + 13 = 0.


Find the equation of the plane which passes through the point (3, 4, −1) and is parallel to the plane 2x − 3y + 5z + 7 = 0. Also, find the distance between the two planes.

 

Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

Find the distance between the planes \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + 7 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i}  + 4 \hat{j}  + 6 \hat{k}  \right) + 7 = 0 .\]

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0 is


The distance of the line \[\vec{r} = 2 \hat{i} - 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - \hat{j}+ 4 \hat{k}  \right)\]  from the plane \[\vec{r} \cdot \left( \hat{i} + 5 \hat{j} + \hat{k} \right) = 5\] is

 


 The distance between the point (3, 4, 5) and the point where the line \[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2}\] meets the plane x + y + z = 17 is

If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Write the coordinates of the point which is the reflection of the point (α, β,  γ) in the XZ-plane.


Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.


The perpendicular distance of the origin from the plane x − 3y + 4z = 6 is ______ 


The equations of planes parallel to the plane x + 2y + 2z + 8 = 0, which are at a distance of 2 units from the point (1, 1, 2) are ________.


If the foot of perpendicular drawn from the origin to the plane is (3, 2, 1), then the equation of plane is ____________.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/ϒ` = 3


The distance of a point P(a, b, c) from x-axis is ______.


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Distance of the point (α, β, γ) from y-axis is ____________.


The distance of the plane `vec"r" *(2/7hat"i" + 3/4hat"j" - 6/7hat"k")` = 1 from the origin is ______.


Find the equation of the plane passing through the point (1, 1, 1) and is perpendicular to the line `("x" - 1)/3 = ("y" - 2)/0 = ("z" - 3)/4`. Also, find the distance of this plane from the origin.


Find the foot of the perpendicular from the point (1, 2, 0) upon the plane x – 3y + 2z = 9. Hence, find the distance of the point (1, 2, 0) from the given plane.


Which one of the following statements is correct for a moving body?


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


A stone is dropped from the top of a cliff 40 m high and at the same instant another stone is shot vertically up from the foot of the cliff with a velocity 20 m per sec. Both stones meet each other after


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


`phi` is the angle of the incline when a block of mass m just starts slipping down. The distance covered by the block if thrown up the incline with an initial speed u0 is


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are


Find the distance of the point (2, 3, 4) measured along the line `(x - 4)/3 = (y + 5)/6 = (z + 1)/2` from the plane 3x + 2y + 2z + 5 = 0.


If the distance of the point (1, 1, 1) from the plane x – y + z + λ = 0 is `5/sqrt(3)`, find the value(s) of λ.


The acute angle between the line `vecr = (hati + 2hatj + hatk) + λ(hati + hatj + hatk)` and the plane `vecr xx (2hati - hatj + hatk)` is ______.


Find the coordinates of points on line `x/1 = (y - 1)/2 = (z + 1)/2` which are at a distance of `sqrt(11)` units from origin.


If the points (1, 1, λ) and (–3, 0, 1) are equidistant from the plane `barr*(3hati + 4hatj - 12hatk) + 13` = 0, find the value of λ.


The distance of the point `2hati + hatj - hatk` from the plane `vecr.(hati - 2hatj + 4hatk)` = 9 will be ______.


Find the equations of the planes parallel to the plane x – 2y + 2z – 4 = 0 which is a unit distance from the point (1, 2, 3).


In the figure given below, if the coordinates of the point P are (a, b, c), then what are the perpendicular distances of P from XY, YZ and ZX planes respectively?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×