рд╣рд┐рдВрджреА

Find the Length of the Altitude of an Equilateral Triangle of Side 2a Cm. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the length of the altitude of an equilateral triangle of side 2a cm. 

рдЙрддреНрддрд░

 

We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having AB = BC = CA = 2a.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, it will bisects the side BC
∴ DC = a
Now, In right triangle ADC
By using Pythagoras theorem, we have 

`AC^2=CD^2+DA^2` 

⇒` (2a)^2=a^2+DA^2`  

⇒` DA^2=4a^2-a^2` 

⇒` DA^2=3a^2` 

⇒` DA=sqrt3a` 

Hence, the length of the altitude of an equilateral triangle of side 2a cm is `sqrt3`ЁЭСО ЁЭСРЁЭСЪ 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 4: Triangles - Exercises 5

APPEARS IN

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×