हिंदी

Find the Lengths of the Medians of A δAbc Whose Vertices Are A(0,-1) , B(2,1) and C (0.3). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the lengths of the medians of a  ΔABC whose vertices are A(0,-1) , B(2,1) and C (0.3).

उत्तर

The vertices of ABC  A(0,-1) , B(2,1) and C (0.3)

Let AD, BE and CF be the medians of Δ ABC.

Let D be the midpoint of BC. So, the coordinates of D ar

`D ((2+0)/2 , (1+3)/2)  i.e  D (2/2 , 4/2)  i.e D (1,2)`

Let E be the midpoint of AC. So the coordinate of E are

 `E ((0+0)/2 , (-1+3)/2)  i.e . E (0/2,0/2)  i.e  E  (0,1) `

Let F be the midpoint of AB. So, the coordinates of F are

 ` F ((0+2)/2  , (-1+1)/2)  i.e  F (2/2 , 0/2) i.e  F  (1,0) `

 `AD = sqrt((1-0)^2 +(2-(-1))^2) = sqrt((1)^2 +(3)^2) = sqrt(1+9) = sqrt(10)  units`

` BE = sqrt((0-2)^2 +(1-1)^2) = sqrt((-2)^2 +(0)^2) = sqrt(4+0) = sqrt(4)= 2  units`

`CF = sqrt((1-0)^2 +(0-3)^2) = sqrt((1)^2 +(-3)^2) = sqrt(1+9) = sqrt(10)  units`

`"Therefore, the lengths of the medians:" AD = sqrt(10) units . BE=2 units and CF = sqrt(10)  units .`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Coordinate Geomentry - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 2 | Q 20

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of a point P on the line segment joining A(1, 2) and B(6, 7) such that AP =(2/5)AB.


Let P and Q be the points of trisection of the line segment joining the points A(2, -2) and B(-7, 4) such that P is nearer to A. Find the coordinates of P and Q.


Find the coordinates of the point which divides the join of (–1, 7) and (4, –3) in the ratio 2 : 3.


Find the ratio in which the line segment joining A (1, −5) and B (−4, 5) is divided by the x-axis. Also, find the coordinates of the point of division.


The line segment joining the points (3, -4) and (1, 2) is trisected at the points P and Q. If the coordinates of P and Q are (p, -2) and (5/3, q) respectively. Find the values of p and q.


A (2, 5), B (–1, 2) and C (5, 8) are the co-ordinates of the vertices of the triangle ABC. Points P and Q lie on AB and AC respectively, such that : AP : PB = AQ : QC = 1 : 2.

  1. Calculate the co-ordinates of P and Q.
  2. Show that : `PQ = 1/3 BC`.

  1. Write down the co-ordinates of the point P that divides the line joining A(−4, 1) and B(17, 10) in the ratio 1 : 2.
  2. Calculate the distance OP, where O is the origin.
  3. In what ratio does the y-axis divide the line AB?

If the point C (–1, 2) divides internally the line-segment joining the points A (2, 5) and B (xy) in the ratio 3 : 4, find the value of x2 + y2 ?


The point Q divides segment joining A(3, 5) and B(7, 9) in the ratio 2 : 3. Find the X-coordinate of Q


If P(9a – 2, – b) divides line segment joining A(3a + 1, –3) and B(8a, 5) in the ratio 3 : 1, find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×