हिंदी

Find Magnetic Flux Density at a Point on the Axis of a Long Solenoid Having 5000 Tums/M When It Carrying a Current of 2 A. - Physics (Theory)

Advertisements
Advertisements

प्रश्न

Find magnetic flux density at a point on the axis of a long solenoid having 5000 tums/m when it carrying a current of 2 A.

योग

उत्तर

Here, n = 5000 turns/m, I = 2A, B = ?

We know, 

B = μ0nI

B = 4π x 10- 7 x 5000 x 2

B = 4 x 3.14 x 10-7 x 1000 T

B = 12.56 x 10-3 T

B = 0.001256 T

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A square loop MNOP of side 20 cm is placed horizontally in a uniform magnetic field acting vertically downwards as shown in the figure. The loop is pulled with a constant velocity of 20 cm s−1 till it goes out of the field.

(i) Depict the direction of the induced current in the loop as it goes out of the field. For how long would the current in the loop persist?

(ii) Plot a graph showing the variation of magnetic flux and induced emf as a function of time.


The current flowing through an inductor of self inductance L is continuously increasing. Plot a graph showing the variation of

Magnetic flux versus the current


A pair of adjacent coils has a mutual inductance of 1.5 H. If the current in one coil changes from 0 to 20 A in 0.5 s, what is the change of flux linkage with the other coil?


Figure shows a rectangular loop conducting PQRS in which the arm PQ is free to move. A uniform magnetic field acts in the direction perpendicular to the plane of the loop. Arm PQ is moved with a velocity v towards the arm Rs. Assuming that the arms QR, RS and SP have negligible resistances and the moving arm PQ has the resistance r, obtain the expression for (i) the current in the loop (ii) the force and (iii) the power required to move the arm PQ.


An inductor is connected to a battery through a switch. Explain why the emf induced in the inductor is much larger when the switch is opened as compared to the emf induced when the switch is closed.


The dimensions of magnetic flux are ______


A loop, made of straight edges has six corners at A(0, 0, 0), B(L, O, 0) C(L, L, 0), D(0, L, 0) E(0, L, L) and F(0, 0, L). A magnetic field `B = B_o(hati + hatk)`T is present in the region. The flux passing through the loop ABCDEFA (in that order) is ______.


A cylindrical bar magnet is rotated about its axis (Figure). A wire is connected from the axis and is made to touch the cylindrical surface through a contact. Then


In a coil of resistance 100 Ω a current is induced by changing the magnetic flux through it. The variation of current with time is shown in the figure. The magnitude of change in flux through the coil is ______.

 


The Figure below shows an infinitely long metallic wire YY' which is carrying a current I'.

P is a point at a perpendicular distance r from it.

  1. What is the direction of magnetic flux density B of the magnetic field at the point P?
  2. What is the magnitude of magnetic flux density B of the magnetic field at the point P?
  3. Another metallic wire MN having length l and carrying a current I is now kept at point P. If the two wires are in vacuum and parallel to each other, how much force acts on the wire MN due to the current I' flowing in the wire YY'?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.