हिंदी

An Alternating Emf of 110 V is Applied to a Circuit Containing a Resistance R of 80 ω and an Inductor L in Series. the Current is Found to Lag Behind the Supply Voltage by an Angle 8 = Tan-1 (3/4). - Physics (Theory)

Advertisements
Advertisements

प्रश्न

An alternating emf of 110 V is applied to a circuit containing a resistance R of 80 Ω and an inductor L in series. The current is found to lag behind the supply voltage by an angle 8 = tan-1 (3/4). Find the :
(i) Inductive reactance
(ii) Impedance of the circuit
(iii) Current flowing in the circuit
(iv) If the inductor has a coefficient of self-inductance of 0.1 H, what is the frequency of the applied emf?

योग

उत्तर

(i) Here, Ev = 110 V, R = 80 Ω, L = 0.1 H
θ = tan-1`(3/4)`

We know that in an L - R circuit
tan θ = `"Lω"/"R" = "X"_"L"/"R"`

`3/4 = "X"_"L"/80`

`"X"_"L" = 80 x 3/4` = 60 Ω

(ii) impedance Z = `sqrt( "X"_L^2 + "R"^2 )`

Z = `sqrt( (60)^2 + (80)^2 )`

 Z = 100 Ω

(ii) Now,
`"I"_"v" = "E"_"v"/"Z" = 110/100 = 1.1 "A"`

(iv) XL = 2πnL

∴ n = `"X"_"L"/(2π"L") = 60/( 2 xx 3.14 xx 0.1 ) = 95.54 "Hz"`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Two cells of emf E1 and E2 and internal resistances r1 and r2 are connected in parallel. Derive the expression for the (i) emf and (ii) internal resistance of a single equivalent cell which can replace this combination.


A metallic rod of length ‘l’ is rotated with a frequency v with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius r, about an axis passing through the centre and perpendicular to the plane of the ring. A constant uniform magnetic field B parallel to the axis is present everywhere. Using Lorentz force, explain how emf is induced between the centre and the metallic ring and hence obtained the expression for it.


An LR circuit with a battery is connected at t = 0. Which of the following quantities is not zero just after the connection?


A circular coil of one turn of radius 5.0 cm is rotated about a diameter with a constant angular speed of 80 revolutions per minute. A uniform magnetic field B = 0.010 T exists in a direction perpendicular to the axis of rotation. Find (a) the maximum emf induced, (b) the average emf induced in the coil over a long period and (c) the average of the squares of emf induced over a long period.


A right-angled triangle abc, made from a metallic wire, moves at a uniform speed v in its plane as shown in figure. A uniform magnetic field B exists in the perpendicular direction. Find the emf induced (a) in the loop abc, (b) in the segment bc, (c) in the segment ac and (d) in the segment ab.


A bicycle is resting on its stand in the east-west direction and the rear wheel is rotated at an angular speed of 100 revolutions per minute. If the length of each spoke is  30.0 cm and the horizontal component of the earth's magnetic field is 2.0 × 10−5 T, find the emf induced between the axis and the outer end of a spoke. Neglect centripetal force acting on the free electrons of the spoke.


Figure shows a square frame of wire having a total resistance r placed coplanarly with a long, straight wire. The wire carries a current i given by i = i0 sin ωt. Find (a) the flux of the magnetic field through the square frame, (b) the emf induced in the frame and (c) the heat developed in the frame in the time interval 0 to \[\frac{20\pi}{\omega}.\]


A wire of mass m and length l can slide freely on a pair of smooth, vertical rails (figure). A magnetic field B exists in the region in the direction perpendicular to the plane of the rails. The rails are connected at the top end by a capacitor of capacitance C. Find the acceleration of the wire neglecting any electric resistance.


The current in an ideal, long solenoid is varied at a uniform rate of 0.01 As−1. The solenoid has 2000 turns/m and its radius is 6.0 cm. (a) Consider a circle of radius 1.0 cm inside the solenoid with its axis coinciding with the axis of the solenoid. Write the change in the magnetic flux through this circle in 2.0 seconds. (b) Find the electric field induced at a point on the circumference of the circle. (c) Find the electric field induced at a point outside the solenoid at a distance 8.0 cm from its axis.


In the given figure current from A to B in the straight wire is decreasing. The direction of induced current in the loop is A ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×