हिंदी

Find the Mean, Median and Mode of the Following Data: Classes: 0-20 20-40 40-60 60-80 80-100 100-120 120-140 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean, median and mode of the following data:

Classes: 0-20 20-40 40-60 40-60 80-100 100-120 120-140
Frequency: 6 8 10 12 6 5 3

 

उत्तर

Consider the following data.

Class Frequency (fi) xi fi xi C.f.
0−20 6 10 60 6
20−40 8 30 240 14
40−60 10 50 500 24
60−80 12 70 840 36
80−100 6 90 540 42
100−120 5 110 550 47
120−140 3 130 390 50
  `N=sumf=50`   `sumf_1x_1=3120`  

Here, the maximum frequency is 12 so the modal class is 60−80.

Therefore,

l = 60

h = 20

f = 12

f1 = 10

f2 = 6

F = 24

Median `=l+(N/2-F)/fxxh`

`=60+(25-24)/12xx20`

`=60+1/12xx20`

`=60+20/12`

= 60 + 1.67

= 61.67

Thus, the median of the data is 61.66.

 

Mean `=(sumf_1x_1)/sumf`

`=3120/50=32.4`

Thus, the mean of the data is 62.4.

 

Mode `=l+(f-f1)/(2f-f1-f2)xxh`

`=60+(12-10)/(24-10-6)xx20`

`=60+2/8xx20`

`=60+40/8`

= 60 + 5

= 65

Thus, the mode of the data is 65.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise 15.5 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 15 Statistics
Exercise 15.5 | Q 15 | पृष्ठ ४७

संबंधित प्रश्न

The marks in science of 80 students of class X are given below: Find the mode of the marks obtained by the students in science.

Marks: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100
Frequency: 3 5 16 12 13 20 5 4 1 1

 


The following table gives the daily income of 50 workers of a factory:

Daily income (in Rs) 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200
Number of workers: 12 14 8 6 10

Find the mean, mode and median of the above data.


Compute the mode of the following data:

Class 0 – 20 20 – 40 40 – 60 60 – 80 80 – 100
Frequency 25 16 28 20 5

 


Compute the mode from the following data:

Age (in years) 0 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 - 35
No of patients 6 11 18 24 17 13 5

Find the mode of the given data:

Class Interval 0 – 20 20 – 40 40 – 60 60 – 80
Frequency 15 6 18 10

 


Calculate the mode of the following distribution:

Class 10 − 15 15 − 20 20 − 25 25 − 30 30 − 35
Frequency 4 7 20 8 1

Find the mode of the following distribution:

Weight (in kgs) 25 − 34 35 − 44 45 − 54 55 − 64 65 − 74 75 − 84
Number of students 4 8 10 14 8 6

For the following distribution

Marks No. of students
Less than 20 4
Less than 40 12
Less than 60 25
Less than 80 56
Less than 100 74
Less than 120 80

the modal class is?


Which of the following is not a measure of central tendency?


Find the mode of the following frequency distribution:

Class: 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Frequency: 25 30 45 42 35

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×