Advertisements
Advertisements
प्रश्न
Find the mean, median and mode of the following data:
Classes: | 0-20 | 20-40 | 40-60 | 40-60 | 80-100 | 100-120 | 120-140 |
Frequency: | 6 | 8 | 10 | 12 | 6 | 5 | 3 |
उत्तर
Consider the following data.
Class | Frequency (fi) | xi | fi xi | C.f. |
0−20 | 6 | 10 | 60 | 6 |
20−40 | 8 | 30 | 240 | 14 |
40−60 | 10 | 50 | 500 | 24 |
60−80 | 12 | 70 | 840 | 36 |
80−100 | 6 | 90 | 540 | 42 |
100−120 | 5 | 110 | 550 | 47 |
120−140 | 3 | 130 | 390 | 50 |
`N=sumf=50` | `sumf_1x_1=3120` |
Here, the maximum frequency is 12 so the modal class is 60−80.
Therefore,
l = 60
h = 20
f = 12
f1 = 10
f2 = 6
F = 24
Median `=l+(N/2-F)/fxxh`
`=60+(25-24)/12xx20`
`=60+1/12xx20`
`=60+20/12`
= 60 + 1.67
= 61.67
Thus, the median of the data is 61.66.
Mean `=(sumf_1x_1)/sumf`
`=3120/50=32.4`
Thus, the mean of the data is 62.4.
Mode `=l+(f-f1)/(2f-f1-f2)xxh`
`=60+(12-10)/(24-10-6)xx20`
`=60+2/8xx20`
`=60+40/8`
= 60 + 5
= 65
Thus, the mode of the data is 65.
APPEARS IN
संबंधित प्रश्न
The shirt sizes worn by a group of 200 persons, who bought the shirt from a store, are as follows:
Shirt size: | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
Number of persons: | 15 | 25 | 39 | 41 | 36 | 17 | 15 | 12 |
Find the model shirt size worn by the group.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
If the mode of the data: 16, 15, 17, 16, 15, x, 19, 17, 14 is 15, then x =
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
Name the modal class.
Find the mode of the following distribution:
Weight (in kgs) | 25 − 34 | 35 − 44 | 45 − 54 | 55 − 64 | 65 − 74 | 75 − 84 |
Number of students | 4 | 8 | 10 | 14 | 8 | 6 |
For ‘more than ogive’ the x-axis represents ______.
Mrs. Garg recorded the marks obtained by her students in the following table. She calculated the modal marks of the students of the class as 45. While printing the data, a blank was left. Find the missing frequency in the table given below.
Marks Obtained |
0 − 20 | 20 − 40 | 40 − 60 | 60 − 80 | 80 − 100 |
Number of Students |
5 | 10 | − | 6 | 3 |
If mode of the following frequency distribution is 55, then find the value of x.
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 10 | 7 | x | 15 | 10 | 12 |