Advertisements
Advertisements
प्रश्न
Find the equation of the line passing through (−5, 7) and parallel to x-axis
उत्तर
The slope of the line parallel to x-axis is 0.
(x1, y1) = (−5, 7)
Required equation of the line is
y − y1 = m(x − x1)
y − 7 = 0(x + 5)
y = 7
APPEARS IN
संबंधित प्रश्न
Find the equation of the line parallel to the line 3x + 2y = 8 and passing through the point (0, 1).
A(1, −5), B(2, 2) and C(−2, 4) are the vertices of triangle ABC. Find the equation of the line through C and parallel to AB.
Find the value of k such that the line (k – 2)x + (k + 3)y – 5 = 0 is:
- perpendicular to the line 2x – y + 7 = 0
- parallel to it.
A(8, −6), B(−4, 2) and C(0, −10) are vertices of a triangle ABC. If P is the mid-point of AB and Q is the mid-point of AC, use co-ordinate geometry to show that PQ is parallel to BC. Give a special name to quadrilateral PBCQ.
Find the slope of a line perpendicular to the foloowing line `"x"/2 + "y"/3 = 4/3`
Find the value of a line perpendicular to the given line 2x-3y = 4
Find the value of a line perpendicular to the given line 3x+4y = 13
Find the value of a line perpendicular to the given line 9x-3y = 5
Find the equation of the perpendicular bisector of AB if the coordinates of A and B are (2,6) and ( 4,6).
Find the equation of a line perpendicular to the join of A(3,5) and B(-1,7) if it passes through the midpoint of AB.