Advertisements
Advertisements
प्रश्न
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
उत्तर
Each exterior angle = `2/5` of a right angle
`= 2/5 xx 90 ^circ`
= 36°
Let number of sides = n
`therefore 360^circ/"n" = 36^circ`
`therefore "n" = 360^circ/36^circ`
n = 10
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 135°
Is it possible to have a regular polygon whose interior angle is: 155°