Advertisements
Advertisements
प्रश्न
Find the number of sides in a regular polygon, if its exterior angle is: two-fifth of right angle
उत्तर
Each exterior angle = `2/5` of a right angle
`= 2/5 xx 90 ^circ`
= 36°
Let number of sides = n
`therefore 360^circ/"n" = 36^circ`
`therefore "n" = 360^circ/36^circ`
n = 10
APPEARS IN
संबंधित प्रश्न
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Find number of side in a regular polygon, if it exterior angle is: 36