Advertisements
Advertisements
प्रश्न
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
उत्तर
Each exterior angle = `1/3` of a right angle
`= 1/3 xx 90`
= 30°
Let number of sides = n
`therefore 360^circ/"n" = 30^circ`
`therefore "n" = 360^circ/30^circ`
n = 12
APPEARS IN
संबंधित प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 155°
Is it possible to have a regular polygon whose exterior angle is: 36°