Advertisements
Advertisements
प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
उत्तर
No. of. sides = n
Each interior angle = `1 1/5` right angles
= `6/5 xx 90`
= 108°
`therefore ("n" - 2)/"n" xx 180^circ = 108^circ`
180n - 360° = 108n
180n - 108n = 360°
72n = 360°
n = 5
APPEARS IN
संबंधित प्रश्न
Find the number of sides in a regular polygon, if its interior angle is: 160°
Find the number of sides in a regular polygon, if its exterior angle is : `1/3` of right angle
Is it possible to have a regular polygon whose interior angle is : 170°
Is it possible to have a regular polygon whose interior angle is:
138°
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.