Advertisements
Advertisements
प्रश्न
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
उत्तर
(i) Since number of sides in the pentagon = 5
Each exterior angle = `360/5 = 72^circ`
∠BAE = 180° – 72°= 108°
(ii) In Δ ABE, AB = AE
∴ ∠ABE = ∠AEB
But ∠BAE + ∠ABE + ∠ AEB = 180°
∴ 108° + 2 ∠ABE = 180° – 108° = 72°
⇒ ∠ABE = 36°
(iii) Since ∠AED = 108° ...[∵ each interior angle = 108°]
⇒ ∠AEB = 36°
⇒ ∠BED = 108° – 36° = 72°
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Is it possible to have a regular polygon whose interior angle is : 170°
Is it possible to have a regular polygon whose interior angle is:
138°
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose exterior angle is: 100°
Is it possible to have a regular polygon whose exterior angle is: 36°