Advertisements
Advertisements
प्रश्न
Find the values of a and b when the factors of the polynomial f(x)= ax3 + bx2 + x a are (x+3) and (2x-1). Factorize the polynomial completely.
उत्तर
(x+3) ⇒ x = -3 .....(i)
(2x - 1) ⇒ x = `1/2` .....(ii)
Putting (i) in polynomial, we get
f (-3) = a × (-3) × (-3) × (-3) + b × (-3) × (-3) + ( -3) - a = 0
⇒ 27 a + 9 b - 3 - a = 0
⇒ `"a" = "9b"/28 - 3 /28` ........(iii)
Putting (ii) in polynomial, we get
`"f" (1/2) = "a" xx (1/2) xx (1/2) xx (1/2) + "b" xx (1/2) xx (1/2) + (1/2) - "a" = 0`
`=> "a"/8 + "b"/4 + 1/2 - "a" = 0`
`=> "b" = "7a"/2 - 2` .........(iv)
Combining (iii) and (iv), we get,
`"a" = 9/28 xx ("7a"/2 - 2) - 3/28`
⇒ 56 a = 63 a - 42
⇒ a= 6
⇒ b = `(7 xx 6)/2 - 2 = 21 - 2 = 19`
a = 6 , b = 19
Putting these values in polynomial, we get
f(x) = 6x3 + 19x2 + x - 6
Hence, equation becomes (x + 3) (2x - 1)(3x + 2) = 0
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
When x3 + 2x2 – kx + 4 is divided by x – 2, the remainder is k. Find the value of constant k.
When the polynomial x3 + 2x2 – 5ax – 7 is divided by (x – 1), the remainder is A and when the polynomial x3 + ax2 – 12x + 16 is divided by (x + 2), the remainder is B. Find the value of ‘a’ if 2A + B = 0.
Using the Remainder Theorem find the remainders obtained when ` x^3 + (kx + 8 ) x + k ` is divided by x + 1 and x - 2 .
Hence find k if the sum of the two remainders is 1.
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 2x3 – 7x2 + 3
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x + 3
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 2x2 – 4x – 1, g(x) = x + 1
For what value of m is x3 – 2mx2 + 16 divisible by x + 2?
A polynomial in ‘x’ is divided by (x – a) and for (x – a) to be a factor of this polynomial, the remainder should be ______.