Advertisements
Advertisements
Question
Find the values of a and b when the factors of the polynomial f(x)= ax3 + bx2 + x a are (x+3) and (2x-1). Factorize the polynomial completely.
Solution
(x+3) ⇒ x = -3 .....(i)
(2x - 1) ⇒ x = `1/2` .....(ii)
Putting (i) in polynomial, we get
f (-3) = a × (-3) × (-3) × (-3) + b × (-3) × (-3) + ( -3) - a = 0
⇒ 27 a + 9 b - 3 - a = 0
⇒ `"a" = "9b"/28 - 3 /28` ........(iii)
Putting (ii) in polynomial, we get
`"f" (1/2) = "a" xx (1/2) xx (1/2) xx (1/2) + "b" xx (1/2) xx (1/2) + (1/2) - "a" = 0`
`=> "a"/8 + "b"/4 + 1/2 - "a" = 0`
`=> "b" = "7a"/2 - 2` .........(iv)
Combining (iii) and (iv), we get,
`"a" = 9/28 xx ("7a"/2 - 2) - 3/28`
⇒ 56 a = 63 a - 42
⇒ a= 6
⇒ b = `(7 xx 6)/2 - 2 = 21 - 2 = 19`
a = 6 , b = 19
Putting these values in polynomial, we get
f(x) = 6x3 + 19x2 + x - 6
Hence, equation becomes (x + 3) (2x - 1)(3x + 2) = 0
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x.
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Use the Remainder Theorem to factorise the following expression:]
`2x^3 + x^2 - 13x + 6`
Find without division, the remainder in the following:
8x2 - 2x + 1 is divided by (2x+ 1)
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x - 4
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 6x2 + 2x – 4, g(x) = `1 - 3/2 x`
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
Without actual division, prove that 2x4 – 5x3 + 2x2 – x + 2 is divisible by x2 – 3x + 2. [Hint: Factorise x2 – 3x + 2]