Advertisements
Advertisements
प्रश्न
Find the values of a and b when the factors of the polynomial f(x)= ax3 + bx2 + x a are (x+3) and (2x-1). Factorize the polynomial completely.
उत्तर
(x+3) ⇒ x = -3 .....(i)
(2x - 1) ⇒ x = `1/2` .....(ii)
Putting (i) in polynomial, we get
f (-3) = a × (-3) × (-3) × (-3) + b × (-3) × (-3) + ( -3) - a = 0
⇒ 27 a + 9 b - 3 - a = 0
⇒ `"a" = "9b"/28 - 3 /28` ........(iii)
Putting (ii) in polynomial, we get
`"f" (1/2) = "a" xx (1/2) xx (1/2) xx (1/2) + "b" xx (1/2) xx (1/2) + (1/2) - "a" = 0`
`=> "a"/8 + "b"/4 + 1/2 - "a" = 0`
`=> "b" = "7a"/2 - 2` .........(iv)
Combining (iii) and (iv), we get,
`"a" = 9/28 xx ("7a"/2 - 2) - 3/28`
⇒ 56 a = 63 a - 42
⇒ a= 6
⇒ b = `(7 xx 6)/2 - 2 = 21 - 2 = 19`
a = 6 , b = 19
Putting these values in polynomial, we get
f(x) = 6x3 + 19x2 + x - 6
Hence, equation becomes (x + 3) (2x - 1)(3x + 2) = 0
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Using the Remainder and Factor Theorem, factorise the following polynomial:
`x^3 + 10x^2 - 37x + 26`
Using the Remainder Theorem, factorise the following completely:
x3 + x2 – 4x – 4
What number should be added to 2x3 - 3x2 + 7x -8 so that the resulting polynomial is exactly divisible by (x-1) ?
A polynomial f(x) when divided by (x - 1) leaves a remainder 3 and when divided by (x - 2) leaves a remainder of 1. Show that when its divided by (x - i)(x - 2), the remainder is (-2x + 5).
When x3 + 3x2 – kx + 4 is divided by (x – 2), the remainder is k. Find the value of k.
(x – 2) is a factor of the expression x3 + ax2 + bx + 6. When this expression is divided by (x – 3), it leaves the remainder 3. Find the values of a and b.
When 2x3 – x2 – 3x + 5 is divided by 2x + 1, then the remainder is
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is