Advertisements
Advertisements
प्रश्न
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
उत्तर
Let the units digit of the number be x.
And the tens digit is y.
So the real number will be = 10y + x,
And reversed number = 10x + y
Situation I
x + y = 9 ...(i)
Situation II
9(number) = 2(flipped number)
or 9(10y + x) = 2(10x + y)
or 90y + 9x = 20x + 2y
or 20x – 9x + 2y – 90y = 0
or 11x – 88y = 0
or x – 8y = 0
or x = 8y ...(ii)
By substituting x = 8y in equation (i)
x + y = 9
or 8y + y = 9
or 9y = 9
or y = 1
Substituting y = 1 into equation two
x = 8y = 8 × 1 = 8
Hence, required number = 10y + x
= 10 × 1 + 8
= 18
संबंधित प्रश्न
Solve the following system of equations: 15x + 4y = 61; 4x + 15y = 72
Solve the following system of linear equations :
2(ax – by) + (a + 4b) = 0
2(bx + ay) + (b – 4a) = 0
Solve the following pair of linear equation by the elimination method and the substitution method:
x + y = 5 and 2x – 3y = 4
Solve the following pair of linear equation by the elimination method and the substitution method:
3x + 4y = 10 and 2x – 2y = 2
Solve the following pair of linear equation by the elimination method and the substitution method.
3x – 5y – 4 = 0 and 9x = 2y + 7
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.
Solve the following simultaneous equation.
`x/3 + 5y = 13 ; 2x + y/2 = 19`
By equating coefficients of variables, solve the following equation.
5x + 7y = 17 ; 3x - 2y = 4
By equating coefficients of variables, solve the following equation.
x − 2y = −10 ; 3x − 5y = −12
A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.
The difference between an angle and its complement is 10° find measure of the larger angle.
If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?
Complete the following table to draw the graph of 3x − 2y = 18
x | 0 | 4 | 2 | −1 |
y | − 9 | ______ | ______ | ______ |
(x, y) | (0, −9) | (______, _______) | (______, _______) | ______ |
Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers
Read the following passage:
Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.![]() |
Based on the above information, answer the following questions:
- Represent the following information algebraically (in terms of x and y).
- (a) What is the prize amount for hockey?
OR
(b) Prize amount on which game is more and by how much? - What will be the total prize amount if there are 2 students each from two games?