Advertisements
Advertisements
प्रश्न
Solve the following pair of linear equation by the elimination method and the substitution method:
x + y = 5 and 2x – 3y = 4
उत्तर
x + y = 5 and 2x – 3y = 4
By elimination method
x + y = 5 ...(i)
2x – 3y = 4 ...(ii)
Multiplying equation (i) by (ii), we get
2x + 2y = 10 ...(iii)
2x – 3y = 4 ...(ii)
Subtracting equation (ii) from equation (iii), we get
5y = 6
y = `6/5`
Putting the value in equation (i), we get
`x = 5 - (6/5) = 19/5`
Hence, `x = 19/5 and y = 6/5`
By substitution method
x + y = 5 ...(i)
Subtracting y both side, we get
x = 5 - y ...(iv)
Putting the value of x in equation (ii) we get
2(5 – y) – 3y = 4
-5y = -6
`y = (-6)/-5`
`y = 6/5`
Putting the value of y in equation (iv) we get
`x = 5 – 6/5`
`x = 19/5`
Hence, `x = 19/5` and `y = 6/5`.
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by using the method of elimination by equating the coefficients: 3x + 4y = 25 ; 5x – 6y = – 9
Solve the following system of equations by using the method of elimination by equating the co-efficients.
`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?
Form the pair of linear equation in the following problem, and find its solutions (if they exist) by the elimination method:
Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
Two types of boxes A, B are to be placed in a truck having a capacity of 10 tons. When 150 boxes of type A and 100 boxes of type B are loaded in the truck, it weighes 10 tons. But when 260 boxes of type A are loaded in the truck, it can still accommodate 40 boxes of type B, so that it is fully loaded. Find the weight of each type of box.
In an envelope there are some 5 rupee notes and some 10 rupee notes. Total amount of these notes together is 350 rupees. Number of 5 rupee notes are less by 10 than twice number of 10 rupee notes. Then find the number of 5 rupee and 10 rupee notes.
The sum of the digits in a two-digits number is 9. The number obtained by interchanging the digits exceeds the original number by 27. Find the two-digit number.
Ajay is younger than Vijay by 5 years. Sum of their ages is 25 years. What is Ajay's age?
If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.
Solve the following simultaneous equation.
x - 2y = -1 ; 2x - y = 7
Solve the following simultaneous equation.
x + y = 11 ; 2x - 3y = 7
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
Solve the following simultaneous equation.
`x/3 + 5y = 13 ; 2x + y/2 = 19`
A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.
Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers
The length of the rectangle is 5 more than twice its breadth. The perimeter of a rectangle is 52 cm, then find the length of the rectangle
The semi perimeter of a rectangular shape garden is 36 m. The length of the garden is 4 m more than its breadth. Find the length and the breadth of the garden
The sum of the digits of a two-digit number is 9. If 27 is added to it, the digits of the number get reversed. The number is ______.