मराठी

Solve the following pair of linear equation by the elimination method and the substitution method: x + y = 5 and 2x – 3y = 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following pair of linear equation by the elimination method and the substitution method:

x + y = 5 and 2x – 3y = 4

बेरीज

उत्तर

x + y = 5 and 2x – 3y = 4

By elimination method

x + y = 5       ...(i)

2x – 3y = 4    ...(ii)

Multiplying equation (i) by (ii), we get

2x + 2y = 10        ...(iii)

2x – 3y = 4        ...(ii)

Subtracting equation (ii) from equation (iii), we get

5y = 6

y = `6/5`

Putting the value in equation (i), we get

`x = 5 - (6/5) = 19/5`

Hence, `x = 19/5 and y = 6/5`

By substitution method

x + y = 5        ...(i)

Subtracting y both side, we get

x = 5 - y        ...(iv)

Putting the value of x in equation (ii) we get

2(5 – y) – 3y = 4

-5y = -6

`y = (-6)/-5`

`y = 6/5`

Putting the value of y in equation (iv) we get

`x = 5  –  6/5`

`x = 19/5`

Hence, `x = 19/5` and `y = 6/5`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Pair of Linear Equations in Two Variables - Exercise 3.4 [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 3 Pair of Linear Equations in Two Variables
Exercise 3.4 | Q 1.1 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following system of equations: 15x + 4y = 61; 4x + 15y = 72


Solve the following system of linear equations :

2(ax – by) + (a + 4b) = 0

2(bx + ay) + (b – 4a) = 0


Solve (a – b) x + (a + b) y = `a^2 – 2ab – b^2 (a + b) (x + y) = a^2 + b^2`


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes `1/2` if we only add 1 to the denominator. What is the fraction?


Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:

Meena went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 she received.


Two types of boxes A, B are to be placed in a truck having a capacity of 10 tons. When 150 boxes of type A and 100 boxes of type B are loaded in the truck, it weighes 10 tons. But when 260 boxes of type A are loaded in the truck, it can still accommodate 40 boxes of type B, so that it is fully loaded. Find the weight of each type of box.


Sanjay gets fixed monthly income. Every year there is a certain increment in his salary. After 4 years, his monthly salary was Rs. 4500 and after 10 years his monthly salary became 5400 rupees, then find his original salary and yearly increment.


Ajay is younger than Vijay by 5 years. Sum of their ages is 25 years. What is Ajay's age?


Solve the following simultaneous equation.

x - 2y = -1 ; 2x - y = 7


Solve the following simultaneous equation.

x + y = 11 ; 2x - 3y = 7 


Solve the following simultaneous equation.

2x + y = -2 ; 3x - y = 7 


Solve the following simultaneous equation.

`x/3 + y/4 = 4; x/2 - y/4 = 1`


Solve the following simultaneous equation.

`x/3 + 5y = 13 ; 2x + y/2 = 19`


By equating coefficients of variables, solve the following equations.

3x - 4y = 7; 5x + 2y = 3


Complete the activity.


The length of the rectangle is 5 more than twice its breadth. The perimeter of a rectangle is 52 cm, then find the length of the rectangle


The solution of the equation ax + by + 5 = 0 and bx − ay − 12 = 0 is (2, – 3). Find the values of a and b


Evaluate: (1004)3


Read the following passage:

Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.

Based on the above information, answer the following questions:

  1. Represent the following information algebraically (in terms of x and y).
  2. (a) What is the prize amount for hockey?
    OR
    (b) Prize amount on which game is more and by how much?
  3. What will be the total prize amount if there are 2 students each from two games?

Rehana went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Rehana got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 did she received.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×