हिंदी

Four Alternative Answers for the Following Question is Given. Choose the Correct Alternative.(10) Seg Xz is a Diameter of a Circle. Point Y Lies in Its Interior. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Four alternative answers for the following question is given. Choose the correct alternative.

 Seg XZ is a diameter of a circle. Point Y lies in its interior. How many of the following statements are true ? (i) It is not possible that ∠XYZ is an acute angle. (ii) ∠XYZ can’t be a right angle. (iii) ∠XYZ is an obtuse angle. (iv) Can’t make a definite statement for measure of ∠XYZ.

विकल्प

  • Only one 

  • Only two 

  • Only three 

  • All 

MCQ

उत्तर

Let P be any point on the arc XZ. 

XZ is the diameter of the circle.
∴ ∠XPZ = 90º       (Angle in a semi-circle is 90º)
So, ∠XYZ cannot be a right angle.
In ∆YPZ, 
∠XYZ > ​∠YPZ                  (An exterior angle of a triangle is greater than its remote interior angle)
⇒ ∠XYZ > ​90º                   (∠YPZ = ∠XPZ)
So, ∠XYZ is an obtuse angle. Therefore, it is not possible that ∠XYZ is an acute angle.
Thus, three of the following statements are true.
Hence, the correct answer is Only three  .

shaalaa.com
Tangent Segment Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Circle - Problem Set 3 [पृष्ठ ८३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 3 Circle
Problem Set 3 | Q 1.1 | पृष्ठ ८३

संबंधित प्रश्न

In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

  1. What is the length of each tangent segment?
  2. What is the measure of ∠MRO?
  3. What is the measure of ∠MRN?


Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.


In the given figure, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DE × GE = 4r2


Four alternative answers for the following question is given. Choose the correct alternative.
 Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is 12 cm, find the diameter of the circle.


In the given figure, M is the centre of the circle and seg KL is a tangent segment.
If MK = 12, KL = \[6\sqrt{3}\] then find –
(1) Radius of the circle.
(2) Measures of ∠K and ∠M.


In the following figure ‘O’ is the centre of the circle.

∠AOB = 1100, m(arc AC) = 450.

Use the information and fill in the boxes with proper numbers.

(i) m(arcAXB) =

(ii)m(arcCAB) =
(iv)∠COB =

(iv)m(arcAYB) =


The perpendicular height of a cone is 12 cm and its slant height is 13 cm. Find the radius of the base of the cone. 


In the given figure, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If MK = 12, KL = `6sqrt3`, then find the radius of the circle.


Segment DP and segment DQ are tangent segments to the circle with center A. If DP = 7 cm. So find the length of the segment DQ.


Length of a tangent segment drawn from a point which is at a distance 15 cm from the centre of a circle is 12 cm, find the diameter of the circle?


In the adjoining figure, O is the center of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

(i) What is the length of each tangent segment?

(ii) What is the measure of ∠MRO?

(iii) What is the measure of ∠MRN?


In the adjoining figure circle with Centre, Q touches the sides of ∠MPN at M and N. If ∠MPN = 40°, find measure of ∠MQN.


The figure ΔABC is an isosceles triangle with a perimeter of 44 cm. The sides AB and BC are congruent and the length of the base AC is 12 cm. If a circle touches all three sides as shown in the figure, then find the length of the tangent segment drawn to the circle from point B.


In a parallelogram ABCD, ∠B = 105°. Determine the measure of ∠A and ∠D.


In the following figure, XY = 10 cm and LT = 4 cm. Find the length of XT.



A circle touches side BC at point P of the ΔABC, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that : AM = `1/2` (Perimeter of ΔABC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×