हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. Calculate the speed of each particle. - Physics

Advertisements
Advertisements

प्रश्न

Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. Calculate the speed of each particle.

संख्यात्मक

उत्तर

Force acting on a particle

= `"GM"^2/(2"R")^2 + "GM"^2/(("R"/sqrt2)^2) cos 45° + "GM"^2/(("R"/sqrt2)^2) cos 45°`

E = `"GM"^2/"R"^2 [1/4 + 1/sqrt2]`

Since particle, moving circular path experience centripetal force,

E = `"MV"^2/"R"`

`"MV"^2/"R" = "GM"^2/"R"^2 [1/4 + 1/sqrt2]`

∴ V = `1/2 sqrt("GM"/"R" (1 + 2sqrt2))`

shaalaa.com
Escape Speed and Orbital Speed
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Gravitation - Evaluation [पृष्ठ ४५]

APPEARS IN

सामाचीर कलवी Physics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 6 Gravitation
Evaluation | Q V. 8. | पृष्ठ ४५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×