Advertisements
Advertisements
प्रश्न
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
उत्तर
From a committee of 8 persons, a chairman and a vice chairman are to be chosen in such a way that one person cannot hold more than one position.
Here, the number of ways of choosing a chairman and a vice chairman is the permutation of 8 different objects taken 2 at a time.
Thus, required number of ways =
8P2 = `(8!)/((8 - 2)!)`
=`(8!)/(6!)`
= `(8 xx 7 xx 6!)/(6!)`
= 8 x 7
= 56
APPEARS IN
संबंधित प्रश्न
if `1/(6!) + 1/(7!) = x/(8!)`, find x
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
Which of the following are true:
(2 +3)! = 2! + 3!
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
The product of r consecutive positive integers is divisible by
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
If nP4 = 12(nP2), find n.
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
Evaluate the following.
`(3! + 1!)/(2^2!)`
Evaluate the following.
`((3!)! xx 2!)/(5!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of ways to arrange the letters of the word “CHEESE”:
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
The total number of 9 digit numbers which have all different digits is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.