Advertisements
Advertisements
प्रश्न
The product of r consecutive positive integers is divisible by
विकल्प
r !
(r − 1) !
(r + 1) !
none of these.
उत्तर
r !
The product of r consecutive integers is equal to r!, so it will be divisible by r!.
APPEARS IN
संबंधित प्रश्न
Evaluate 4! – 3!
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
How many 4-digit numbers are there with no digit repeated?
Find n if n – 1P3 : nP4 = 1 : 9
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Evaluate each of the following:
6P6
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of ways to arrange the letters of the word CHEESE are
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
The possible outcomes when a coin is tossed five times:
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
How many ways can the product a2 b3 c4 be expressed without exponents?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.