Advertisements
Advertisements
प्रश्न
गुणनखंड कीजिए :
x3 – 6x2 + 11x – 6
उत्तर
माना p(x) = x3 – 6x2 + 11x – 6
p(x) का अचर पद = – 6
– 6 के गुणनखंड ±1, ±2, ±3, ±6 हैं।
परीक्षण से, हम पाते हैं कि, p(1) = 0, इसलिए (x – 1) p(x) का एक गुणनखंड है। ...[∵ (1)3 – 6(1)2 + 11(1) – 6 = 1 – 6 + 11 – 6 = 0]
अब, हम देखते हैं कि x3 – 6x2 + 11x = 6
= x3 – x2 – 5x2 + 5x + 6x – 6
= x2(x – 1) – 5x(x – 1) + 6(x – 1)
= (x – 1)(x2 – 5x + 6) ...[(x – 1) सामान्य कारक लेना]
Now, (x2 – 5x + 6) = x2 – 3x – 2x + 6 ...[मध्य पद को विभाजित करके]
= x(x – 3) – 2(x – 2)
= (x – 3)(x – 2)
∴ x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3)
APPEARS IN
संबंधित प्रश्न
बताइए कि निम्नलिखित बहुपद का एक गुणनखंड x + 1 है।
x4 + 3x3 + 3x2 + x + 1
बताइए कि निम्नलिखित बहुपद का एक गुणनखंड x + 1 है।
`x^3 - x^2 - (2 + sqrt2)x + sqrt2`
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
2x3 – 3x2 – 17x + 30
निम्नलिखित का प्रसार कीजिए :
`(1/x + y/3)^3`
निम्नलिखित के गुणनखंड कीजिए :
1 – 64a3 – 12a + 48a2
गुणनखंड कीजिए :
`a^3 - 2sqrt(2)b^3`
गुणनखंड कीजिए :
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`
x2 + 4y2 + z2 + 2xy + xz – 2yz को (–z + x – 2y) से गुणा कीजिए।