Advertisements
Advertisements
प्रश्न
Given A = {x : –1 < x ≤ 5, x ∈ R} and B = {x : – 4 ≤ x < 3, x ∈ R}
Represent on different number lines:
A – B
उत्तर
A – B = {x : 3 ≤ x ≤ 5, x ∈ R}
It can be represented on a number line as
APPEARS IN
संबंधित प्रश्न
For the following inequations, graph the solution set on the real number line:
– 4 ≤ 3x – 1 < 8
For the following inequations, graph the solution set on the real number line:
x – 1 < 3 – x ≤ 5
Represent the solution of the following inequalities on the real number line:
`(2x + 5)/3 > 3x - 3`
Use the real number line to find the range of values of x for which:
x < 0 and –3 ≤ x < 1
Given:
A = {x : 11x – 5 > 7x + 3, x ∈ R} and
B = {x : 18x – 9 ≥ 15 + 12x, x ∈ R}.
Find the range of set A ∩ B and represent it on the number line.
Solve the following linear in-equation and graph the solution set on a real number line:
3(5x+ 3) ≥ 2(9x-17), x ∈ W
Solve the inequation = 12 + `1(5)/(6)` ≤ 5 + 3x, x ∈ R. Represent the solution on a number line.
Solve the inequation – 3 ≤ 3 – 2x < 9, x ∈ R. Represent your solution on a number line.
Solve the following inequation and represent the solution set on the number line : `4x - 19 < (3x)/(5) - 2 ≤ -(2)/(5) + x, x ∈ "R"`
The solution set for the following number line is: