हिंदी

Given: FB = FD, AE ⊥ FD and FC ⊥ AD. Prove that: FBAD=BCED. - Mathematics

Advertisements
Advertisements

प्रश्न

Given: FB = FD, AE ⊥ FD and FC ⊥ AD.

Prove that: `(FB)/(AD) = (BC)/(ED)`.

योग

उत्तर

Given, FB = FD

∴ ∠FDB = ∠FBD   ...(1)

In ΔAED = ΔFCB,

∠AED = ∠FCB = 90°

∠ADE = ∠FBC  ...[Using (1)]

ΔAED ~ ΔFCB  ...[By AA similarity]

∴ `(AD)/(FB) = (ED)/(BC)`

`(FB)/(AD) = (BC)/(ED)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (A) [पृष्ठ २१४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (A) | Q 17 | पृष्ठ २१४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×