हिंदी

If (– 4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

If (– 4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.

योग

उत्तर


Let the vertices be (x, y)

Distance between (x, y) and (4, 3) is = `sqrt((x - 4)^2 + (y - 3)^2)`    ...(1)

Distance between (x,y) and (– 4, 3) is = `sqrt((x + 4)^2 + (y - 3)^2)`   ...(2)

Distance between (4, 3) and (– 4, 3) is = `sqrt((4 + 4)^2 + (3 - 3)^2) = sqrt(8)^2`= 8

According to the question,

Equation (1) = (2)

(x – 4)2 = (x + 4)2

x2 – 8x + 16 = x2 + 8x + 16

16x = 0

x = 0

Also, equation (1) = 8

(x – 4)2 + (y – 3)2 = 64  ...(3)

Substituting the value of x in (3)

Then (0 – 4)2 + (y – 3)2 = 64

(y – 3)2 = 64 – 16

(y – 3)2 = 48

y – 3 = `(+)4sqrt(3)`

y = `3(+) 4sqrt(3)`

Neglect y = `3(+) 4sqrt(3)` as if y = `3(+) 4sqrt(3)` then origin cannot interior of triangle

Therefore, the third vertex = `(0, 3 - 4sqrt(3))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Coordinate Geometry - Exercise 7.4 [पृष्ठ ८५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 7 Coordinate Geometry
Exercise 7.4 | Q 1 | पृष्ठ ८५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×