हिंदी

If A = [54-23] and B = [-134-1], then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.

योग

उत्तर

3A – 2B + C = I
∴ C = I + 2B – 3A

∴ C = `[(1, 0),(0, 1)] + 2[(-1, 3),(4, -1)] -3[(5, 4),(-2, 3)]`

∴ C = `[(1, 0),(0, 1)] +[(-2, 6),(8, -2)] - [(15, 12),(-6, 9)]`

∴ C = `[(1 - 2 - 15, 0 + 6 - 12),(0 + 8 + 6, 1 - 2 - 9)]`

∴ C = `[(-16, -6),(14, -10)]`

∴ CT = `[(-16, 14),(-6, -10)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.4 [पृष्ठ ५९]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1,  6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.


If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BTAT.


Choose the correct alternative.

If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.


State whether the following is True or False :

Every scalar matrix is unit matrix.


State whether the following is True or False :

A = `[(4, 5),(6, 1)]` is no singular matrix.


State whether the following is True or False :

If A is symmetric, then A = –AT.


State whether the following is True or False :

If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.


Solve the following :

Find k, if `[(7, 3),(5, "k")]` is a singular matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that A + B = B + A


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`


Evaluate: `[(3),(2),(1)][(2,-4,3)]`


Evaluate : `[2  -1   3][(4),(3),(1)]`


Choose the correct alternative:

If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.


Choose the correct alternative:

`[(3, 2, 1)][(2),(-2),(-1)]` = ______


Choose the correct alternative:

For any square matrix B, matrix B + BT is ______


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×