Advertisements
Advertisements
प्रश्न
Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]`
उत्तर
Given equations are
2A – B = `[(6, -6, 0),(-4, 2, 1)]` ...(i)
and A – 2B = `[(3, 2, 8),(-2, 1, -7)]` ...(ii)
By (i) – (ii) × 2, we get
3B = `[(6, -6, 0),(-4, 2, 1)] -2[(3, 2, 8),(-2, 1, -7)]`
= `[(6, -6, 0),(-4, 2, 1)] - [(6, 4, 16),(-4, 2, -14)]`
= `[(6 - 6, -6 - 4, 0- 16),(-4 + 4, 2 - 2, 1 + 14)]`
∴ 3B = `[(0, -10, -16),(0, 0, 15)]`
∴ B = `1/3[(0, -10, -16),(0, 0, 15)]`
∴ B = `[(0, (-10)/3, (-16)/3),(0, 0, 5)]`
By (i) × 2 – (ii), we get
3A = `2[(6, -6, 0),(-4, 2, 1)] - [(3, 2, 8),(-2, 1, -7)]`
= `[(12, -12, 0),(-8, 4, 2)] - [(3, 2, 8),(-2, 1, -7)]`
= `[(12 - 3, -12 - 2, 0 - 8),(-8 + 2, 4 - 1, 2 + 7)]`
∴ 3A = `[(9, -14, -8),(-6, 3, 9)]`
∴ A = `1/3[(9, -14, -8),(-6, 3, 9)]`
∴ A = `[(3, (-14)/3, -8/3),(-2, 1, 3)]`
APPEARS IN
संबंधित प्रश्न
Find the values of x and y if
`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`
Simplify the following :
`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`
If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.
Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0
Solve the following equations by reduction method :
x + 2y + z = 8
2x+ 3y - z = 11
3x - y - 2z = 5
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.
If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.
If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.
There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.
If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.
Find AT, if A = `[(1, 3),(-4, 5)]`
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.
If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and" "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
State whether the following is True or False :
Every scalar matrix is unit matrix.
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
State whether the following is True or False :
If A is symmetric, then A = –AT.
State whether the following is True or False :
If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)
If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix
If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
Choose the correct alternative:
For any square matrix B, matrix B + BT is ______
Choose the correct alternative:
If A and B are two square matrices of order 3, then (AB)T = ______
State whether the following statement is True or False:
Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
In a Skew symmetric matrix, all diagonal elements are ______
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2
Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x + 1),(y - 1), (3z)]`
If A = `[(2, 5),(1, 3)]` then A–1 = ______.
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2