हिंदी

If A = [101312],B=[21-435-2]and C=[023-1-10], verify that (A + 2B + 3C)T = AT + 2BT + CT. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and"  "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.

योग

उत्तर

A + 2B + 3C

= `[(1, 0, 1),(3, 1, 2)] + 2[(2, 1, -4),(3, 5, -2)] + 3[(0, 2, 3),(-1, -1, 0)]`

= `[(1, 0, 1),(3, 1, 2)] + [(4, 2, -8),(6, 1, -4)] + [(0, 6, 9),(-3, -3, 0)]`

= `[(1 + 4 + 0, 0 + 2 + 6, 1 - 8 + 9),(3 + 6 - 3, 1 +10 - 3, 2 - 4+ 0)]`

∴ A + 2B + 3C = `[(5, 8, 2),(6, 8, -2)]`

∴ [A + 2B + 3C]T = `[(5, 6),(8, 8),(2, -2)]`   ...(i)

Now, AT = `[(1, 3),(0, 1),(1, 2)], "B"^"T" = [(2, 3),(1, 5),(-4, -2)]`

and CT = `[(0, -1),(2, -1),(3, 0)]`

∴ AT + 2BT + 3CT 

= `[(1, 3),(0, 1),(1, 2)] + 2[(2, 3),(1, 5),(-4, -2)] + 3[(0, -1),(2, -1),(3, 0)]`

= `[(1, 3),(0, 1),(1, 2)] + [(4, 6),(2, 10),(-8, -4)] + [(0, -3),(6, -3),(9, 0)]`

= `[(1 + 4 + 0, 3 + 6 + 3),(0 + 2 + 6, 1 + 10 - 3),(1 - 8 + 9, 2 - 4 + 0)]`

∴ AT + 2BT + 3CT = `[(5, 6),(8, 8),(2, -2)]`     ...(iii)

From (i) and (ii), we get
[A + 2B + 3C]T = AT + 2BT + 3CT.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.4 [पृष्ठ ५९]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.


If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1,  6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.


There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics

A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`

August Sales (in Rupees) Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`

Find the increase in sales in Rupees from July to August 2017.


If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.


Find AT,  if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


Solve the following :

Find k, if `[(7, 3),(5, "k")]` is a singular matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that A + B = B + A


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If = `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


Evaluate : `[2  -1   3][(4),(3),(1)]`


Choose the correct alternative:

`[(3, 2, 1)][(2),(-2),(-1)]` = ______


Choose the correct alternative:

For any square matrix B, matrix B + BT is ______


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


If A = `[(2, 5),(1, 3)]` then A–1 = ______.


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×