English

If A = [101312],B=[21-435-2]and C=[023-1-10], verify that (A + 2B + 3C)T = AT + 2BT + CT. - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and"  "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.

Sum

Solution

A + 2B + 3C

= `[(1, 0, 1),(3, 1, 2)] + 2[(2, 1, -4),(3, 5, -2)] + 3[(0, 2, 3),(-1, -1, 0)]`

= `[(1, 0, 1),(3, 1, 2)] + [(4, 2, -8),(6, 1, -4)] + [(0, 6, 9),(-3, -3, 0)]`

= `[(1 + 4 + 0, 0 + 2 + 6, 1 - 8 + 9),(3 + 6 - 3, 1 +10 - 3, 2 - 4+ 0)]`

∴ A + 2B + 3C = `[(5, 8, 2),(6, 8, -2)]`

∴ [A + 2B + 3C]T = `[(5, 6),(8, 8),(2, -2)]`   ...(i)

Now, AT = `[(1, 3),(0, 1),(1, 2)], "B"^"T" = [(2, 3),(1, 5),(-4, -2)]`

and CT = `[(0, -1),(2, -1),(3, 0)]`

∴ AT + 2BT + 3CT 

= `[(1, 3),(0, 1),(1, 2)] + 2[(2, 3),(1, 5),(-4, -2)] + 3[(0, -1),(2, -1),(3, 0)]`

= `[(1, 3),(0, 1),(1, 2)] + [(4, 6),(2, 10),(-8, -4)] + [(0, -3),(6, -3),(9, 0)]`

= `[(1 + 4 + 0, 3 + 6 + 3),(0 + 2 + 6, 1 + 10 - 3),(1 - 8 + 9, 2 - 4 + 0)]`

∴ AT + 2BT + 3CT = `[(5, 6),(8, 8),(2, -2)]`     ...(iii)

From (i) and (ii), we get
[A + 2B + 3C]T = AT + 2BT + 3CT.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.4 [Page 59]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following equations by reduction method: 

x + y + z = 6,

3x - y + 3z = 10

5x + y - 4z = 3 


Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


Simplify the following :

`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`


If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :

  Programmes
Programmes 1 2 3 4
  (Times in minutes)
A 120 100 80 90
B 80 90 110 70
C 110 140 120 100
D 90 90 80 90

How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ? 


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.


If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.


Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


Find AT,  if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.


Evaluate : `[2  -1   3][(4),(3),(1)]`


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Choose the correct alternative:

`[(3, 2, 1)][(2),(-2),(-1)]` = ______


In a Skew symmetric matrix, all diagonal elements are ______


Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x  + 1),(y - 1), (3z)]`


If A = `[(2, 5),(1, 3)]` then A–1 = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×