Advertisements
Advertisements
Question
Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`
Solution
`x + y = [(7,0),(2,5)]` ...(i)
`x - y = [(3,0),(0,3)]` ...(ii)
Adding (i) and (ii)
`2x = [(10,0),(2,8)]`
`therefore x = [(5,0),(1,4)]`
Subtracting (ii) from (i)
`2y = [(4,0),(2,2)]`
`therefore y = [(2,0),(1,1)]`
APPEARS IN
RELATED QUESTIONS
Find the values of x and y if
`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
Solve the following equations by reduction method:
x+ y+z = 6,
3x-y+3z = 10
5x+ y-4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`
Simplify the following :
`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`
Solve the following equations by reduction method :
x + 2y + z = 8
2x+ 3y - z = 11
3x - y - 2z = 5
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that (A + B) + C = A + (B + C)
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.
If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.
If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.
Choose the correct alternative.
The matrix `[(0, 0, 0),(0, 0, 0)]` is _______
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
State whether the following is True or False :
If A is symmetric, then A = –AT.
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix
If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
Answer the following question:
Find matrices A and B, where 2A – B = `[(1, -1),(0, 1)]` and A + 3B = `[(1, -1),(0, 1)]`
Answer the following question:
If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
In a Skew symmetric matrix, all diagonal elements are ______
If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)] "and" (A + B)(A-B) = A^2 - B^2, "Find" a "and" b`
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2