English

Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix [4-23-5]. - Mathematics and Statistics

Advertisements
Advertisements

Question

Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.

Sum

Solution

A square matrix A can be expressed as the sum of a symmetric and a skew-symmetric matrix as

A = `(1)/(2)("A" + "A"^"T") + (1)/(2)("A" - "A"^"T")`

Let A = `[(4, -2),(3, -5)]`

∴ AT = `[(4, 3),(-2, -5)]`

∴ A + AT = `[(4, -2),(3, -5)] + [(4, 3),(-2, -5)]`

= `[(4 + 4, -2 + 3),(3 - 2, -5 - 5)]`

= `[(8, 1),(1, -10)]`

Also, A – AT = `[(4, -2),(3, -5)] - [(4, 3),(-2, -5)]`

= `[(4 - 4, -2 - 3),(3 + 2, -5 + 5)]`

= `[(0, -5),(5, 0)]`

Let P = `(1)/(2)("A" + "A"^"T")`

= `(1)/(2)[(8, 1),(1, -10)]`

= `[(4, 1/2),(1/2, -5)]`
and
Q = `(1)/(2)("A" - "A"^"T")`

= `(1)/(2)[(0, -5),(5, 0)]`

= `[(0, -(5)/(2)),(5/2, 0)]`

∴ P is a symmetric matrix         ...[∵ aij = aij]

and Q is a skew-symmetric matrix.   ...[∵ aij = – aij]
∴ A = P + Q

∴ A = `[(4, 1/2),(1/2, -5)] + [(0, -(5)/(2)),(5/2, 0)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.4 [Page 59]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


Simplify the following :

`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1,  6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and"  "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Choose the correct alternative.

If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.


State whether the following is True or False :

If A is symmetric, then A = –AT.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`


If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.


If = `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics.

A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`

August sales(in Rupees), Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,

Find the increase in sales in Rupees from July to August 2017.


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Choose the correct alternative:

For any square matrix B, matrix B + BT is ______


State whether the following statement is True or False:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix


In a Skew symmetric matrix, all diagonal elements are ______


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×