English

Solve the following equations for X and Y, if 3X − Y = [1-1-11] and X – 3Y = [0-10-1]. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.

Sum

Solution

3X – Y = `[(1, -1),(-1, 1)]`    ...(1)

X – 3Y = `[(0, -1),(0, -1)]`   ...(2)

Multiplying (1) by 3, we get,

9X – 3Y = `[(3, -3),(-3, 3)]`

Subtracting (2) from this equation, we get,

8X = `[(3, -3),(-3, 3)] - [(0, -1),(0, -1)]`

= `[(3 - 0, -3-(-1)),(-3 - 0, 3 - ( - 1))]`

= `[(3, -2),(-3, 4)]`

∴ X = `1/8[(3, -2),(-3, 4)]`

= `[(3/8, (-1)/4),((-3)/8, 1/2)]`

From (1), Y = `3"X" - [(1, -1),(-1, 1)]` 

= `3[(3/8, (-1)/4),((-3)/8, 1/2)] - [(1, -1),(-1, 1)]`

= `[(9/8, (-3)/4),((-9)/8, 3/2)] - [(1, -1),(-1, 1)]`

= `[(9/8 - 1, (-3)/4 - (-1)),((-9)/8 - (-1), 3/2 - 1)]`

= `[(1/8, 1/4),((-1)/8, 1/2)]`

∴ X = `[(3/8, (-1)/4),((-3)/8, 1/2)] and "Y" = [(1/8, 1/4),((-1)/8, 1/2)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.5 [Page 87]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the values of x and y if

`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`


If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`

Verify that |AB| = |A|.|B|


Simplify the following :

`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


Solve the following equations by reduction method : 

x + 2y + z = 8 

2x+ 3y - z = 11 

3x - y - 2z = 5


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BTAT.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Choose the correct alternative.

The matrix `[(0, 0, 0),(0, 0, 0)]` is _______


Choose the correct alternative.

If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.


Fill in the blank:

A = `[(3),(1)]` is ........................ matrix.


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


State whether the following is True or False :

If A is symmetric, then A = –AT.


State whether the following is True or False :

If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.


Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that A + B = B + A


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


If = `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


Evaluate : `[2  -1   3][(4),(3),(1)]`


Answer the following question:

Find matrices A and B, where 2A – B = `[(1, -1),(0, 1)]` and A + 3B = `[(1, -1),(0, 1)]`


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


Choose the correct alternative:

If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.


State whether the following statement is True or False:

Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix


In a Skew symmetric matrix, all diagonal elements are ______


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x  + 1),(y - 1), (3z)]`


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×