Advertisements
Advertisements
Question
If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.
Solution
A = `[(5, -3),(4, -3),(-2, 1)]`
∴ AT = `[(5, 4, -2),(-3, -3, 1)]`
∴ (AT)T = `[(5, -3),(4, -3),(-2, 1)]`
A.
APPEARS IN
RELATED QUESTIONS
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
Simplify the following :
`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0
If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.
Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.
There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees) Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
Find the increase in sales in Rupees from July to August 2017.
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BTAT.
Choose the correct alternative.
If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
State whether the following is True or False :
Every scalar matrix is unit matrix.
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
Evaluate: `[(3),(2),(1)][(2,-4,3)]`
Answer the following question:
If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
In a Skew symmetric matrix, all diagonal elements are ______
Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x + 1),(y - 1), (3z)]`
If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)] "and" (A + B)(A-B) = A^2 - B^2, "Find" a "and" b`