English

There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, - Mathematics and Statistics

Advertisements
Advertisements

Question

There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics

A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`

August Sales (in Rupees) Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`

Find the increase in sales in Rupees from July to August 2017.

Sum

Solution

Increase sales rupees from July to August 2017.

For Suresh:

Increase in sales for Physics books

= 6650 – 5600 = ₹ 1050

Increase in sales for Chemistry books

= 7055 – 6750 = ₹ 305
Increase in sales for Mathematics books

= 8905 – 8500 = ₹ 405

For Ganesh:

Increase in sales for Physics books

= 7000 – 6650 = ₹ 350

Increase in sales for Chemistry books

= 7500 – 7055 = ₹ 445

Increase in sales for Mathematics books

= 10200 – 8905 = ₹ 1295

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.2 [Page 47]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`

Verify that |AB| = |A|.|B|


Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


Solve the following equations by reduction method : 

x + 2y + z = 8 

2x+ 3y - z = 11 

3x - y - 2z = 5


A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :

  Programmes
Programmes 1 2 3 4
  (Times in minutes)
A 120 100 80 90
B 80 90 110 70
C 110 140 120 100
D 90 90 80 90

How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ? 


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that (A + B) + C = A + (B + C)


Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.


If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and"  "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Fill in the blank :

If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______


State whether the following is True or False :

A = `[(4, 5),(6, 1)]` is no singular matrix.


State whether the following is True or False :

If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics.

A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`

August sales(in Rupees), Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,

Find the increase in sales in Rupees from July to August 2017.


There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics.

A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`

August sales(in Rupees), Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,

If both book shops got 10 % profit in the month of August 2017, find the profit for each book seller in each subject in that month


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


Choose the correct alternative:

For any square matrix B, matrix B + BT is ______


Choose the correct alternative:

If A and B are two square matrices of order 3, then (AB)T = ______


State whether the following statement is True or False:

Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix


State whether the following statement is True or False:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×