English

Answer the following question: If A = [1-10234012], B = [22-4-4242-15], show that BA = 6I - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I

Sum

Solution

BA = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)] [(1, -1, 0),(2, 3, 4),(0, 1, 2)]`

= `[(2 + 4 - 0, -2 + 6 - 4, 0 + 8 - 8),(-4 + 4 + 0, 4 + 6 - 4, 0 + 8 - 8),(2 - 2 + 0, -2 - 3 + 5, 0 - 4 + 10)]`

= `[(6, 0, 0),(0, 6, 0),(0, 0, 6)]`

= `6[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

∴ BA = 6I

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Miscellaneous Exercise 4(B) [Page 101]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Determinants and Matrices
Miscellaneous Exercise 4(B) | Q II. (8) | Page 101

RELATED QUESTIONS

Find the values of x and y if

`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`


Solve the following equations by reduction method: 

x + y + z = 6,

3x - y + 3z = 10

5x + y - 4z = 3 


If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`

Verify that |AB| = |A|.|B|


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics

A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`

August Sales (in Rupees) Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`

Find the increase in sales in Rupees from July to August 2017.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.


Find AT,  if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BTAT.


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


State whether the following is True or False :

If A is symmetric, then A = –AT.


Solve the following :

Find k, if `[(7, 3),(5, "k")]` is a singular matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


Choose the correct alternative:

`[(3, 2, 1)][(2),(-2),(-1)]` = ______


State whether the following statement is True or False:

Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×