Advertisements
Advertisements
Question
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.
Solution
A square matrix A can be expressed as the sum of a symmetric and a skew-symmetric matrix as
A = `(1)/(2)("A" + "A"^"T") + (1)/(2)("A" - "A"^"T")`
Let A = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
∴ AT = `[(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
∴ A + AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] + [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 + 3, 3 - 2, -1-4),(-2 + 3, -2 - 2, 1 - 5),(-4 - 1, -5 + 1, 2 + 2)]`
= `[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
Also, A – AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] - [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 - 3, 3 + 2, -1+ 4),(-2 - 3, -2 + 2, 1 + 5),(-4 + 1, -5 - 1, 2 - 2)]`
= `[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
Let P = `(1)/(2)("A" + "A"^"T")`
= `(1)/(2)[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
and Q = `(1)/(2)("A" - "A"^"T")`
= `(1)/(2)[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
∴ P is a symmetric matrix ...[∵ aij = aij]
and Q is a skew symmetric matrix. ...[∵ aij = – aij]
∴ A = P + Q
∴ A = `(1)/(2)[(6, 1, -5),(1, -4, -4),(-5, -4, 4)] + (1)/(2)[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`.
APPEARS IN
RELATED QUESTIONS
Find the values of x and y if
`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`
Solve the following equations by reduction method:
x+ y+z = 6,
3x-y+3z = 10
5x+ y-4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Solve the following equations by reduction method :
x + 2y + z = 8
2x+ 3y - z = 11
3x - y - 2z = 5
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.
There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees) Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
Find the increase in sales in Rupees from July to August 2017.
If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.
If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and" "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.
If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.
State whether the following is True or False :
If A is symmetric, then A = –AT.
State whether the following is True or False :
If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.
Solve the following :
Find k, if `[(7, 3),(5, "k")]` is a singular matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that A + B = B + A
If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix
If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
In a Skew symmetric matrix, all diagonal elements are ______
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2