मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix [33-1-2-21-4-52]. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.

बेरीज

उत्तर

A square matrix A can be expressed as the sum of a symmetric and a skew-symmetric matrix as

A = `(1)/(2)("A" + "A"^"T") + (1)/(2)("A" - "A"^"T")`

Let A = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`

∴ AT = `[(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`

∴ A + AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] + [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`

= `[(3 + 3, 3 - 2, -1-4),(-2 + 3, -2 - 2, 1 - 5),(-4 - 1, -5 + 1, 2 + 2)]`

= `[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`

Also, A – AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] - [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`

= `[(3 - 3, 3 + 2, -1+ 4),(-2 - 3, -2 + 2, 1 + 5),(-4 + 1, -5 - 1, 2 - 2)]`

= `[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`

Let P = `(1)/(2)("A" + "A"^"T")`

= `(1)/(2)[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`

and Q = `(1)/(2)("A" - "A"^"T")`

= `(1)/(2)[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`

∴ P is a symmetric matrix          ...[∵ aij = aij]

and Q is a skew symmetric matrix.  ...[∵ aij = –  aij]
∴ A = P + Q

∴ A = `(1)/(2)[(6, 1, -5),(1, -4, -4),(-5, -4, 4)] + (1)/(2)[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.4 [पृष्ठ ५९]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the values of x and y if

`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`


Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :

  Programmes
Programmes 1 2 3 4
  (Times in minutes)
A 120 100 80 90
B 80 90 110 70
C 110 140 120 100
D 90 90 80 90

How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ? 


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


Find AT,  if A = `[(1, 3),(-4, 5)]`


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Choose the correct alternative.

If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


State whether the following is True or False :

If A is symmetric, then A = –AT.


Solve the following :

Find k, if `[(7, 3),(5, "k")]` is a singular matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that A + B = B + A


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`


Evaluate: `[(3),(2),(1)][(2,-4,3)]`


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x  + 1),(y - 1), (3z)]`


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×