मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If [2a+b3a-bc+2d2c-d]=[234-1], find a, b, c and d. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.

बेरीज

उत्तर

`[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`

∴ By  equality of matrices, we get
2a + b = 2        ....(i)
3a – b = 3        ....(ii)
c + 2d = 4       ....(iii)
2c –d = – 1      ....(iv)
Adding (i) and (ii), we get
5a = 5
∴ a = 1
Substituting a = 1 in (i), we get
2(1) + b = 2
∴ b = 0
By (iii) + (iv) x 2, we get
5c = 2

∴ c = `(2)/(5)`
Substituting c = `(2)/(5)` i (iii), we get

`(2)/(5) + 2d` = 4

∴ 2d = `4 - (2)/(5)`

∴ 2d = `(18)/(5)`

∴ d = `(9)/(5)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.2 [पृष्ठ ४७]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the values of x and y if

`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`


If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`

Verify that |AB| = |A|.|B|


Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`


If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


Solve the following equations by reduction method : 

x + 2y + z = 8 

2x+ 3y - z = 11 

3x - y - 2z = 5


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that (A + B) + C = A + (B + C)


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1,  6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.


If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Fill in the blank :

If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`


Evaluate : `[2  -1   3][(4),(3),(1)]`


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


If A = `[(2, 5),(1, 3)]` then A–1 = ______.


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×