मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find a, b, c if [135ab-5-7-4c0] is a symmetric matrix. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.

बेरीज

उत्तर

Let A = `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` 

∴ AT = `[(1, "b", -4),(3/5, -5, "c"),("a", -7, 0)]`

Since A is a symmetric matrix,

A = AT

∴ `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)] = [(1, "b", -4),(3/5, -5, "c"),("a", -7, 0)]`

∴ By equality of matrices, we get

a = –4, b = `3/5`, c = –7

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Exercise 4.4 | Q 7 | पृष्ठ ८३

संबंधित प्रश्‍न

Find the values of x and y if

`2 [(x,5),(7,y-3)] [(3,-4),(1,2)] = [(7,6),(15,14)]`


Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Choose the correct alternative.

The matrix `[(0, 0, 0),(0, 0, 0)]` is _______


Fill in the blank:

A = `[(3),(1)]` is ........................ matrix.


State whether the following is True or False :

Every scalar matrix is unit matrix.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] + [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`


Evaluate : `[2  -1   3][(4),(3),(1)]`


Answer the following question:

Find matrices A and B, where 2A – B = `[(1, -1),(0, 1)]` and A + 3B = `[(1, -1),(0, 1)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


State whether the following statement is True or False:

Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×