हिंदी

Find a, b, c if [135ab-5-7-4c0] is a symmetric matrix. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.

योग

उत्तर

Let A = `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` 

∴ AT = `[(1, "b", -4),(3/5, -5, "c"),("a", -7, 0)]`

Since A is a symmetric matrix,

A = AT

∴ `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)] = [(1, "b", -4),(3/5, -5, "c"),("a", -7, 0)]`

∴ By equality of matrices, we get

a = –4, b = `3/5`, c = –7

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.4 | Q 7 | पृष्ठ ८३

संबंधित प्रश्न

Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


Simplify the following :

`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`


If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,

verify that A (adj A) = (adj A) A = |A| . I


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.


There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics

A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`

August Sales (in Rupees) Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`

Find the increase in sales in Rupees from July to August 2017.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.


Choose the correct alternative.

If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.


Fill in the blank:

A = `[(3),(1)]` is ........................ matrix.


Fill in the blank :

If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


Solve the following :

Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.


Evaluate : `[2  -1   3][(4),(3),(1)]`


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


In a Skew symmetric matrix, all diagonal elements are ______


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×