मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the Following Equations by Reduclion Method X+3y+3z= 16 , X+4y+4z=21 , X+3y+4z = 19 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 

बेरीज

उत्तर

Matrix equation is 

`[(1,3,3),(1,4,4),(1,3,4)][(x),(y),(z)] = [(16),(21),(19)]`

R2 → R2 - R3

`[(1,3,3),(0,1,0),(1,3,4)] [(x),(y),(z)] = [(16),(2),(19)]`

R3 → R3 - R1

`[(1,3,3),(0,1,0),(0,0,1)][(x),(y),(z)] = [(16),(2),(3)]`

`[(x+3y+3z),(0+y+0),(0+0+z)] = [(16),(2),(3)]`

∴ x+3y+3z = 16

y = 2

z = 3

∴ x + 3(2) + 3(3) = 16

∴ x + 6 + 9 = 16

∴ x = 16 - 15 = 1

∴ x = 1 , y = 2 , z = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


Simplify the following :

`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


If A = `[(1, -2),(3, -5),(-6, 0)],"B" = [(-1, -2),(4, 2),(1, 5)] "and C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]`  and X – 3Y = `[(0, -1),(0, -1)]`.


Find AT,  if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.


If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BTAT.


Fill in the blank:

A = `[(3),(1)]` is ........................ matrix.


Fill in the blank :

Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______


State whether the following is True or False :

Every scalar matrix is unit matrix.


State whether the following is True or False :

A = `[(4, 5),(6, 1)]` is no singular matrix.


State whether the following is True or False :

If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.


Solve the following :

Find k, if `[(7, 3),(5, "k")]` is a singular matrix.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix


Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]` 


Answer the following question:

If A = `[(2, 1),(0, 3)]`, B = `[(1, 2),(3, -2)]`, verify that |AB| = |A||B|


Choose the correct alternative:

For any square matrix B, matrix B + BT is ______


If A = `[(2, 5),(1, 3)]` then A–1 = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×