Advertisements
Advertisements
प्रश्न
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
उत्तर
A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
∴ AT = `[(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
∴ A + AT = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)] + [(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
= `[(1 + 1, 2 + 3, 4 - 2),(3 + 2, 2 + 2, 1 - 3),(-2 + 4, -3 + 1, 2 + 2)]`
∴ A + AT = `[(2, 5, 2),(5, 4, -2),(2, -2, 4)]`
∴ (A + AT)T = `[(2, 5, 2),(5, 4, -2),(2, -2, 4)]`
∴ (A + AT)T = A + AT i.e., A + AT = (A + AT)T
∴ A + AT is a symmetric matrix.
A – AT = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)] - [(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
= `[(1 - 1, 2 - 3, 4 + 2),(3 - 2, 2 - 2, 1 + 3),(-2 - 4, -3 - 1, 2 - 2)]`
∴ A – AT = `[(0, -1, 6),(1, 0, 4),(-6, -4, 0)]`
∴ (A – AT)T = `[(0, 1, -6),(-1, 0, -4),(6, 4, 0)]`
= `-[(0, -1, 6),(1, 0, 4),(-6, -4, 0)]`
∴ (A – AT)T = – (A – AT)
i.e., A – AT = – (A – AT)T
∴ A – AT is a skew symmetric matrix.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,
verify that A (adj A) = (adj A) A = |A| . I
A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :
Programmes | ||||
Programmes | 1 | 2 | 3 | 4 |
(Times in minutes) | ||||
A | 120 | 100 | 80 | 90 |
B | 80 | 90 | 110 | 70 |
C | 110 | 140 | 120 | 100 |
D | 90 | 90 | 80 | 90 |
How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ?
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.
If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.
There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.
Find AT, if A = `[(1, 3),(-4, 5)]`
If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.
If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B.
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.
If A = `[(2, -1),(3, -2),(4, 1)] "and B" = [(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = ATBT.
Fill in the blank:
A = `[(3),(1)]` is ........................ matrix.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
State whether the following is True or False :
If A is symmetric, then A = –AT.
Solve the following :
Find k, if `[(7, 3),(5, "k")]` is a singular matrix.
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that A + B = B + A
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)
Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]`
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
If both book shops got 10 % profit in the month of August 2017, find the profit for each book seller in each subject in that month
Evaluate: `[(3),(2),(1)][(2,-4,3)]`
Answer the following question:
Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`
Answer the following question:
If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
State whether the following statement is True or False:
Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2
If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)] "and" (A + B)(A-B) = A^2 - B^2, "Find" a "and" b`