Advertisements
Advertisements
प्रश्न
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
उत्तर
Let A = `[(2, x, 5),(3, 1, z),(y, 5, 8)]`
∴ AT = `[(2, 3, y),(x, 1, 5),(5, z, 8)]`
Since A is a symmetric matrix,
A = AT
∴ `[(2, x, 5),(3, 1, z),(y, 5, 8)] = [(2, 3, y),(x, 1, 5),(5, z, 8)]`
∴ By equality of matrices, we get
x = 3, y = 5, z = 5.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
Solve the following equations by reduction method:
x+ y+z = 6,
3x-y+3z = 10
5x+ y-4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :
Programmes | ||||
Programmes | 1 | 2 | 3 | 4 |
(Times in minutes) | ||||
A | 120 | 100 | 80 | 90 |
B | 80 | 90 | 110 | 70 |
C | 110 | 140 | 120 | 100 |
D | 90 | 90 | 80 | 90 |
How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ?
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.
Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
Find x and y, if `[(2x + y, -1, 1),(3, 4y, 4)] [(-1, 6, 4),(3, 0, 3)] = [(3, 5, 5),(6, 18, 7)]`.
There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.
If A = `[(1, 2),(-1, -2)], "B" = [(2, "a"),(-1, "b")]` and (A + B)2 = A2 + B2, find the values of a and b.
Find AT, if A = `[(1, 3),(-4, 5)]`
If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?
If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
Choose the correct alternative.
If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.
Fill in the blank:
A = `[(3),(1)]` is ........................ matrix.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
State whether the following is True or False :
If A is symmetric, then A = –AT.
Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that A + B = B + A
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
If both book shops got 10 % profit in the month of August 2017, find the profit for each book seller in each subject in that month
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
If A and B are two square matrices of order 3, then (AB)T = ______
State whether the following statement is True or False:
Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2
Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),( 2z)]`
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2