Advertisements
Advertisements
प्रश्न
State whether the following is True or False :
If A is symmetric, then A = –AT.
पर्याय
True
False
उत्तर
If A is symmetric, then A = AT False.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by reduction method:
x + y + z = 6,
3x - y + 3z = 10
5x + y - 4z = 3
Solve the following equations by reduction method:
x+ y+z = 6,
3x-y+3z = 10
5x+ y-4z = 3
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`
Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,
verify that A (adj A) = (adj A) A = |A| . I
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither.
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Solve the following equations for X and Y, if 3X − Y = `[(1, -1),(-1, 1)]` and X – 3Y = `[(0, -1),(0, -1)]`.
If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT, such that 3A – 2B + C = I, whre I is e unit matrix of order 2.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
Choose the correct alternative.
The matrix `[(0, 0, 0),(0, 0, 0)]` is _______
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that A + B = B + A
If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.
Find matrices A and B, if `2"A" - "B" = [(6, -6, 0),(-4, 2, 1)] and "A" - 2"B" = [(3, 2, 8),(-2, 1, -7)]`
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
Evaluate: `[(3),(2),(1)][(2,-4,3)]`
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix