Advertisements
Advertisements
प्रश्न
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subject – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics.
A = `[(5600, 6750, 8500),(6650, 7055, 8905)]"First Row Suresh"/"Second Row Ganesh"`
August sales(in Rupees), Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)]"First Row Suresh"/"Second Row Ganesh"` then,
Find the increase in sales in Rupees from July to August 2017.
उत्तर
Increase in sales in rupees from July to August 2017
For Suresh:
Increase in sales for Physics books
= 6650 – 5600 = ₹ 1050
Increase in sales for Chemistry books
= 7055 – 6750 = ₹ 305
Increase in sales for Mathematics books
= 8905 – 8500 = ₹ 405
For Ganesh:
Increase in sales for Physics books
= 7000 – 6650 = ₹ 350
Increase in sales for Chemistry books
= 7500 – 7055 = ₹ 445
Increase in sales for Mathematics books
= 10200 – 8905 = ₹ 1295
Hence, total increase in sales for suresh book shop is ₹ 1760 and for Ganesh book shop is ₹ 2090.
APPEARS IN
संबंधित प्रश्न
If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`
Verify that |AB| = |A|.|B|
Find x , y , z , w if `[("x+y","x-y"),("y+z+w","2w-z")]` = `[(2,-1),(9,5)]`
Simplify the following :
`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`
If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.
If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0
A computers centre has four expert programmers . The centre needs four application programmes to be developed. The head of the computer centre , after stying carefully the programmes to be developed , estimates the computer time in minutes required by the respective experts to develop the application programmes as follows :
Programmes | ||||
Programmes | 1 | 2 | 3 | 4 |
(Times in minutes) | ||||
A | 120 | 100 | 80 | 90 |
B | 80 | 90 | 110 | 70 |
C | 110 | 140 | 120 | 100 |
D | 90 | 90 | 80 | 90 |
How should the head of the computer centre assign the programmes to the programmers so that the total time required is minimum ?
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2),(0, 3)] "and C" = [(4, 3),(-1, 4),(-2, 1)]`, Show that A + B = B + A
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.
If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.
For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Construct the matrix A = [aij]3×3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, prove that AT = A.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find AT + 4BT.
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.
Choose the correct alternative.
The matrix `[(0, 0, 0),(0, 0, 0)]` is _______
Choose the correct alternative.
If A = `[(α, 4),(4, α)]` and |A3| = 729, then α = ______.
Fill in the blank :
If A = `[(4, x),(6, 3)]` is a singular matrix, then x is _______
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
State whether the following is True or False :
If A and B are square matrices of same order, then (A + B)2 = A2 + 2AB + B2.
Solve the following :
Find k, if `[(7, 3),(5, "k")]` is a singular matrix.
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4, 3),(-1, 4),(-2, 1)]` Show that A + B = B + A
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
If A = `[("i", 2"i"),(-3, 2)] and "B" = [(2"i", "i"),(2, -3)]`, where `sqrt(-1)` = i,, find A + B and A – B. Show that A + B is a singular. Is A – B a singular ? Justify your answer.
If = `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.
Evaluate: `[(3),(2),(1)][(2,-4,3)]`
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`
State whether the following statement is True or False:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]` is a skew symmetric matrix
In a Skew symmetric matrix, all diagonal elements are ______
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2
If A = `[(2, 5),(1, 3)]` then A–1 = ______.