Advertisements
Advertisements
प्रश्न
Find matrices A and B, if 2A – B = `[(6, -6, 0),(-4, 2, 1)]` and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`.
उत्तर
Given equations are
2A – B = `[(6, -6, 0),(-4, 2, 1)]` ...(i)
and A – 2B = `[(3, 2, 8),(-2, 1, -7)]` ...(ii)
By (i) – (ii) x 2, we get
3B = `[(6, -6, 0),(-4, 2, 1)] - 2[(3, 2, 8),(-2, 1, -7)]`
= `[(6, -6, 0),(-4, 2, 1)] - [(6, 4, 16),(-4, 2, -14)]`
= `[(6 - 6, -6 - 4, 0 - 16),(-4 + 4, 2 - 2, 1 + 14)]`
∴ 3B = `[(0, -10, -16),(0, 0, 15)]`
∴ B = `(1)/(3)[(0, -10, -16),(0, 0, 15)]`
∴ B = `[(0, (-10)/3, (-16)/3),(0, 0, 5)]`
By (i) x 2 – (ii), we get
3A = `2[(6, -6, 0),(-4, 2, 1)] - [(3, 2, 8),(-2, 1, -7)]`
= `[(12, -12, 0),(-8, 4, 2)] - [(3, 2, 8),(-2, 1, -7)]`
= `[(12 - 3, -12 - 2, 0 - 8),(-8 + 2 , 4 - 1, 2 + 7)]`
∴ 3A = `[(9, -14, -8),(-6, 3, 9)]`
∴ A = `(1)/(3)[(9, 14, -8),(-6, 3, 9)]`
∴ A = `[(3, (-14)/3, (-8)/3),(-2, 1, 3)]`.
APPEARS IN
संबंधित प्रश्न
Simplify the following :
`{3 [(1,2,0),(0,-1,3)] - [(1,5,-2),(-3,-4,4)]} [(1),(2),(1)]`
If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.
Solve the following equations by reduclion method
x+3y+3z= 16 , x+4y+4z=21 , x+3y+4z = 19
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` ,
verify that A (adj A) = (adj A) A = |A| . I
Solve the following equations by reduction method :
x + 2y + z = 8
2x+ 3y - z = 11
3x - y - 2z = 5
If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.
Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.
There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.
July sales (in Rupees), Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees) Physics Chemistry Mathematics
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
Find the increase in sales in Rupees from July to August 2017.
There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If [aij]3×3, where aij = 2(i – j), find A and AT. State whether A and AT both are symmetric or skew-symmetric matrices?
If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A + B)T = AT + BT.
If A = `[(7, 3, 0),(0, 4, -2)], "B" = [(0, -2, 3),(2, 1, -4)]`, then find 5AT – 5BT.
If A = `[(1, 0, 1),(3, 1, 2)], "B" = [(2, 1, -4),(3, 5, -2)] "and" "C" = [(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + CT.
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(4, -2),(3, -5)]`.
Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.
Fill in the blank :
Matrix B = `[(0, 3, 1),(-3, 0, -4),("p", 4, 0)]` is skew symmetric, then the value of p is _______
State whether the following is True or False :
A = `[(4, 5),(6, 1)]` is no singular matrix.
Solve the following :
Find x, y, z if `[(2, x, 5),(3, 1, z),(y, 5, 8)]` is a symmetric matrix.
Find a, b, c if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.
Simplify, `costheta[(costheta, sintheta),(-sintheta, costheta)] + sintheta[(sintheta, -costheta),(costheta, sintheta)]`
If = `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.
Evaluate : `[2 -1 3][(4),(3),(1)]`
Answer the following question:
Find matrices A and B, where 2A – B = `[(1, -1),(0, 1)]` and A + 3B = `[(1, -1),(0, 1)]`
Answer the following question:
Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`
Choose the correct alternative:
If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.
Choose the correct alternative:
`[(3, 2, 1)][(2),(-2),(-1)]` = ______
Choose the correct alternative:
If A and B are two square matrices of order 3, then (AB)T = ______
State whether the following statement is True or False:
Every square matrix of order n can be expressed as sum of symmetric and skew symmetric matrix
Find x, y, z if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, -2),(1, 3)]}[(2),(1)] = [(x + 1),(y - 1), (3z)]`
Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),( 2z)]`