Advertisements
Advertisements
प्रश्न
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c
उत्तर
`[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]`
⇒ `[(a + 2 - 1, 3 + b - 1),(4 + 1 + 2, 2 - 2 - c)] = [(5, 0),(7, 3)]`
⇒ `[(a + 1, b + 2),(7, -c)] = [(5, 0),(7, 3)]`
Comparing the corresponding elements :
a + 1 = 5
⇒ a – 4
b + 2 = 0
⇒ b = –2
–c = 3
⇒ c = –3.
APPEARS IN
संबंधित प्रश्न
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`